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ABSTRACT
Building natural language programming systems that are geared
towards end-users requires the abstraction of formalisms inherently
introduced by programming languages, capturing the intent of
natural language inputs and mapping it to existing programming
language constructs.

We present a novel end-user programming paradigm for Python,
which maps natural language commands into Python code. The
proposed semantic parsing model aims to reduce the barriers for
producing well-formed code (syntactic gap) and for exploring third-
party APIs (lexico-semantic gap). The proposed method was imple-
mented in a supporting system and evaluated in a usability study
involving programmers as well as non-programmers. The results
show that both groups are able to produce code with or without
prior programming experience.

CCS CONCEPTS
•Human-centered computing→Natural language interfaces;
User interface programming; Text input; Usability testing.
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interactive programming; end-user programming; semantic parsing;
IDEs; novice programmers
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1 INTRODUCTION
Natural Language Processing (NLP) focuses on the creation of meth-
ods and tools to automate the interpretation of natural language.
Semantic parsing is one particular field within NLP which focuses
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on the mapping of a natural language sentence into a formal, i.e.
machine-understandable representation of its meaning [8].

One application of semantic parsing is the development of end-
user programming (EuP) models using natural language [17, 30].
Systems that can be programmedwithout the knowledge of a formal
programming language could elevate programming tasks to the
possibly inexperienced end-user. End-users can be experts from
domains where programming tasks needs to be carried out on a
regular basis but learning a programming language is not a core
part of their education. A typical example is a psychologist that
needs to analyze data gathered from experiments. An end-user
programming tool can free him from the burden of learning the
syntax of a programming language and the large set of functions
required to build a valid program.

However the understanding of natural language in the context
of programming is a complex task: First, a system must be capable
of interpreting a natural language statement, to efficiently identify
possible atomic language units such as control flow statements,
functions or parameters and how to combine them to best reflect
the intent. Second, the input has to be mapped to those units seman-
tically, that is by their meaning rather than by mere syntax, as the
end-user is potentially unaware of the concrete nomenclature used
to refer to those units. This problem is known as the vocabulary
problem [9].

Consider the following example: A user is asked to implement a
greeting routine for an assistant robot in a hospital environment -
the robot should issue a greeting, then turn left and move out of the
way. The robot programming interface (further called knowledge
base) provides the possibility to issue different high level commands
to perform actions, such as moving, speaking or grabbing an object.

Our investigations, analogous to a study about end-user pro-
gramming learning barriers by Ko et al. [13], rephrase the problems
the user is confronted with in order to successfully implement such
a routine as the following questions:

(1) How is the knowledge base of actions organized, i.e. what is its
syntactic structure (e.g. return and parameter types)?

(2) What are the required actions and their names?
(3) How to compose those actions to express a concrete routine?

Current approaches like Choreographe, [28] Ruru [5], VPL [21],
and modern IDEs offer assistance to answering questions (1) either
by visualizing the program or providing convenience functions
like indexing the knowledge base and syntactic code completion,
they rarely focus on the question (2) and other than template and
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Figure 1: Vajra in action: The user issues a natural language command (a) and chooses its position in the existing code (b). The
system generates a list of possible statements (c) and their associated parameters (d), semantically most similar to the input.
Upon user choice (disambiguation) the concrete statement is inserted into the code (e) and the user can proceed to the next
statement (a).

boiler-plate code, they provide little help to capture the users intent
in source code (3). Even if the end-user has figured out how to
express his ideas in the formal way the programming language
requires him, he still has to match his vocabulary to the one of
the knowledge base. On the other hand, approaches that convert
natural language to source code directly [4, 10] are capable of cap-
turing the intent of natural language by learning natural language
patterns from a big training set. Further they are capable of bridging
the gap between the API vocabulary and the user vocabulary by
injecting background knowledge about word similarity, albeit indi-
rectly, by using external word representations that are pre-trained
on large-scale textual corpora [23, 27]. However these approaches
sacrifice transparency and control, as the output of such a model is
impossible to interpret with regards to validity. In addition, due to
their dependency on deep learning, their performance is dependant
on a high-quality training set.

To achieve the best from both worlds we introduce a hybrid
approach and the end-user programming platform Vajra that im-
plements it. Its core features are:

• Iterative Workflow: Users create their program statement
by statement. This design choice helps to address question
(3). We argue that this way, the user is able to discover the
solution to a problem in a guided way and directly controls
the result, in contrast to a fully-automated translation from
input to a complete program.

• Natural Language Support: By parsing natural language
input and semantically matching it with existing resources,
resulting in well-formed program statements, we address
questions (1) and (2). We argue that this allows end-users to
create programming statements independently of the vocab-
ulary of the knowledge base.
• Live Program Analysis: The statements generated by the
natural language parser are further refined by the symbolic
dependencies of the existing code from previous steps.

Figure 1 shows a usage scenario:

(a) The user issues a written utterance in natural language using his
vocabulary that will be translated into a programming language
statement.

(b) He choses the position in the code editor where the statement
should be inserted.

(c) From a list of proposed statements that are semantically most
similar to the input the user choses one that fits best.

(d) The user sets the statement’s parameters that are automatically
parsed from the input or deduced from existing code.

(e) Finally the statement with its chosen parameters is inserted
into the code and the user can proceed with the creation of the
program.

To our knowledge Vajra is the first attempt to combine a vo-
cabulary independent semantic parsing approach with an iterative
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workflow to create an environment for domain experts and ca-
sual users to compose programs via natural language. To evaluate
whether this approach can help end-users with their programming
tasks, we conducted a usability study with 12 participants with dif-
fering experience in programming. They were asked to implement
various routines for a robot in a hospital setting. While doing so,
their time to complete the tasks was measured and they were asked
to fill out a questionnaire. We found that participants were able to
successfully finish the tasks and were confident to use the system
only after a short introduction.

The contributions of this paper are:

• The idea of supporting users by allowing them to incremen-
tally create a program by parsing natural language into new
statements based on the existing program in a vocabulary-
independent fashion;
• The underlying semantic parsing model, which utilizes a
combination of a dependency analysis, distributed semantics
and a ranking algorithm to provide an adaptable, transparent
and human-interpretable prediction model;
• Vajra, a prototype IDE implementing this idea;
• A usability study, which shows that Vajra can be used by pro-
grammers as well as non-programmers to efficiently create
programs.

2 BACKGROUND AND RELATEDWORK
The term end-user programming is defined as: "programming to
achieve the result of a program primarily for personal, rather public
use." [12, Ch. 2.2]. Vajra is categorized as an end-user programming
platform, a platform that allows end-users with and without pro-
gramming experience to build an application [31, p. 5]. Since our
system is designed for building a program instruction by instruc-
tion, a certain level of understanding of programming concepts is
needed. This requirement categorizes our proposed system as an
end-user professional programming platform [31, p. 5], but as the
evaluation shows, end-users can easily reach this level of under-
standing about programming concepts after using the platform for
a short time.

Template Code Generation. An approach of combining natural
language processing with end-user programming was taken by
Metafor (2005) [19]: In Metafor, the user tells a natural language
story. The system is processing this story and produces Python
source code in the form of a class skeleton with partially imple-
mented methods. Based on a common sense knowledge base, the
system is inferring which objects of the natural language story
should be translated into methods and classes. For example, based
on the story "There is a bar with a bartender who makes drinks.",
Metafor would produce two nested classes ’bar’ and ’bartender’
with a single method ’make(drink)’ [19]. Based on existing back-
ground knowlege, Metafor is inferring that the bartender is an actor
and should be presented as a class with a method "make(drink)".
Instead of producing a finished application, Metafor is intended
for brainstorming [19, Ch. 4]. While Vajra works on a predefined
knowledge base, which defines available operations and its docu-
mentation, Metafor creates code which could act as a knowledge
base for Vajra, instead of using existing operations of the knowledge

base. NLP for NLP (natural language processing for natural lan-
guage programming) [22] is another approach combining natural
language processing with end-user programming. This approach
generates low-level code, specialized in generating loops and the
corresponding steps. For the user query "Write a program to gener-
ate 1000 numbers" it generates a ’for’ loop of 1000 iterations and
adds a step "generateNumber(i)". Other work focused on translating
natural language to high-level code or in the case of [1] to an object-
oriented model based on UML, which also can be used to generate
code skeletons [1]. Instead of using a knowledge base of code oper-
ations, the field of human-robot interaction provides similar needs
but mapping natural language to a set of robot interactions.

Semantic Parsing. The work of Lauria et al. [14] covers the pro-
gramming of robots using natural language. Based on speech, trans-
ferred to natural language and initially processed using a syntactic
parser, a robot is controlled by executable commands for robot
navigation defined by a knowledge base. A similar approach was
chosen by Eppe et al. [6] based on deep semantic reasoning and
robot-human dialog for disambiguation. These approaches are very
similar to ours because the natural language is processed by se-
mantic annotation and mapped to robot functions which form a
program. While our approach allows the user to compose instruc-
tions in any order, these systems focus on sequences of navigation
commands and their underlying state transitions.

Search Based. Modern IDE’s support programmers with string-
based API search after an initial indexing step [7, 11, 20]. Tools like
CodeBroker [32] or PRIME [24] take the current code state into
account to provide contextualized search results. Little et al. [18]
use a keyword-oriented search to overcome the vocabulary gap.
Their approach is different to ours, as it does not involve a semantic
parsing step and is thus not capable of accepting actual sentences
as input.

Program Synthesis. The idea of composing programs automati-
cally borrows concepts from the rich literature of program synthesis.
Modern approaches in this branch try to to code approaches aim
to utilize deep learning models to convert natural language into a
set of operations directly [4, 10]. However, in order for a user to
understand the program, and specifically to verify the assumptions
about the API he uses, we propose to use an interactive method
of code creation instead. In this way, users can see how and why
different natural language commands result in different statements
and adapt to it, as opposed to a black-box approach which will
either result in a desired program or a spurious one, without provid-
ing an explanation. CodeMend [29] is very similar to our approach
as it translates natural language commands into code or modifies
existing code into natural language, taking into account the current
code state. However they scrap the web for existing code to train
their prediction model and to predict results. Thus CodeMend is not
capable of dealing with APIs not seen during training time without
adapting the whole model to take this API into account. While
our approach also needs to be trained on new APIs, the training
set is comparatively small as we don’t utilize a complex machine
learning architecture and can easily be automatically constructed
from the API documentation. In conclusion, CodeMend will excel
with popular APIs such as scikit-learn [26] due to the abundance of
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example code on code sharing platforms like GitHub1 and Stack-
Overlow2, while our approach is geared towards APIs with scarce
to no resources available.

3 END USER PROGRAMMING PLATFORM
Vajra assists the user in building a program step by step. Individual
instructions are added by the user from a list of predictions, which
are based on the user’s query as well as other surrounding state-
ments. The iterative workflow to create a program is illustrated in
Figure 2 and can be summarized in 5 simple steps:
(1) Enter a query as a natural language command, to express what

the program is intended to do next
(2) Select a location for the next statement (in most cases it is the

natural sequence)
(3) Select a statement from the list of proposed statements
(4) Select proposed values as parameters of the statement
(5) Add the statement to the program

The user can change the query at any time to update the predic-
tion list.

3.1 Language model
The program composed by the user is a list of statements which
utilize a sub-set of the Python language with the following restric-
tions:
• variables names must not be re-assigned.
• only function calls and object oriented composition (dot
(.) operator) are allowed. This means that control-flow ele-
ments like for, if or while and convenience functions like
lambda expressions or list comprehensions are not among
the proposed statements.

While it may seem as a limiting factor at first, the control flow
elements can be modeled by the knowledge base to support them
(with functions like action.executeIf(condition)). We argue
that these restrictions facilitate the understanding of the program
and ensure that the user can only build upon resources designed
and documented by the developer of the knowledge base.

3.2 Semantic Parsing
To provide a semantic approximation prediction system based on
the userâĂŹs query, this query must first be processed and the
semantic information extracted. The process of extracting the se-
mantic meaning of a sentence is called semantic parsing. In a first
step, the userâĂŹs query is annotated to mark sections extracted
in later steps. This annotation procedure is divided into multiple
processing steps, each building upon the previous one to further
refine the annotation and is shown in Figure 3.
1 The syntactic parser tokenizes the sentence and extracts Part-of-
Speech (POS) tags as well as the dependency structure.

2 The Semantic Type Tagger detects special information like file
names or numbers in the natural language input. We deploy
a rule-based approach to detect those. This enables a precise
parameter proposal generation.

1https://github.com
2https://stackoverflow.com

3 The Reported Speech Tagger identifies reported speech inside the
input which is important since it might be used by the user to
communicate (string) values as parameters to the system.

4 The Lexical Role Labeler pre-processes the annotated tokens and
assigns them their lexical role (such as noun, verb, verb objects).
Furthermore it detects stop words.

5 As a last annotation step, the Semantic Role Labeler is responsible
for labeling the lexical role objects by their semantic role in the
context of predicting resources and parameters. It’s possible out-
come can be seen in Table 1. It uses all annotation information
from previous steps to create a semantically annotated and fil-
tered tree structure of semantic roles and relationships between
them. This tree, in contrast to the dependency tree, is based on
parts of the sentence instead of individual tokens.
The result of the annotation is visualized in Figure 4.
To compare the userâĂŹs input with items from the knowledge

base, only semantically relevant parts are extracted from the output
of the Semantic Role Labeler and collected as a tuple of candidates
(M, Pn , Pv , Pnv ) where
• m ∈ M represent the user’s main intent in the form of objects
and actions
• pn ∈ Pn are possible parameter names.
• pv ∈ Pv are possible parameter values
• pnv ∈ Pnv is a list of tuples representing possible detected
mappings between parameter names and values

We use a rule based approach illustrated in Algorithm 1 to generate
the candidate lists from the annotated semantic roles and their rela-
tionships. handleDisconnectedPairs in this context is a function
that detects additional mappings pnv that were not detected by the
Semantic Role Labeler, such as (deдrees, 90) in the input sentence
“set degrees to 90”. The extraction output of our guiding example is
seen in Figure 4.

3.3 Statement proposal generation
Based on the processed input a list of predicted resources, which can
be selected as new statements, is presented to the user. To predict
these resources, additionally to program analysis, the system uses
semantic approximation between the resources of the knowledge
base and the user’s query. These resources must then be ranked
based on a feature vector to form a sorted list of predictions. To
form fs , for every knowledge base resource and the processed input,

Table 1: Possible semantic roles and relations between them.

Role Description
ACTION Verbs. describe interactions between objects

OBJ subjects and objects. represent an entity associated
with an action

VALUE semantic types and reported speech. candidates for
primitive type parameters

MOD Modifiers such as adjectives. Define further at-
tributes of objects and actions

Relation Description
MOD Modifier relations (e.g. ’green robot’)
ATTR relations between VALUE and OBJ objects

https://github.com
https://stackoverflow.com
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Figure 2: Iterative workflow (User interactions are in orange): (1) the user issues a query and (2) chooses where to insert the
result in the code editor. (3) he choses one statement from a list of proposals and (4) choses its corresponding parameters. (5)
the statement is inserted into the editor.

the sets of pairs Mname ,Mdesc , Pname−name , Pname−descPvalue
are built where
• Mname is the Cartesian product ofM and the resource name
• Mdesc is the Cartesian product ofM and the resource docu-
mentation
• Pname−name is the Cartesian product of Pn and the parame-
ters of the resource
• Pname−desc is the Cartesian product of Pn and the documen-
tations of the resource parameters

User query Syntactic parsing

Semantic Type Tagger

Tokens, POS Tags, Dep Tree

Reported Speech Tagger

Identify Semantic Types

Lexical Role Labeler

Identify Reported Speech

Semantic Role Labeler

Extracted Lexical Roles

Extraction

Extracted Semantic Roles

Figure 3: Pipeline of processing steps to annotate the user
query

VB DT NN IN CD NNS

Rotate the robot by 90 degrees

root

det

dobj

prep

num

pobj

Lexical Role Structure

(Rotate, V ERB) (by, PREP )

(robot, NOU N )

(deдr ees, NOU N )

(90, SEM |number )

Rotate robot by 90 degrees
ACTION OBJ PREP VALUE:NUMBER OBJ

Semantic Role Structure

ROOT

OBJ

CONN OBJ

ATTR

Main candidatesm: rotate, deдr ees, robot

Param Names pn: deдr ees, robot

Param Values pv : 90, deдr ees, robot

Param Pairs pnv : (deдr ees, 90)

Extracted Candidates

Figure 4: Semantic Parser output for the phrase “rotate the
robot by 90 degrees”

• Pvalue is the Cartesian product of Pnv ∪ Pv and the docu-
mentations of the resource parameters.
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Figure 5: Statement proposal generation for the phrase “Rotate robot by 90 degrees" (higher rank means better matching).

The feature vector fs = (d1, ..,d5, s1, .., s5) is formed according to
Table 2. The resource list is ranked and enriched by a program anal-
ysis component which adds most plausible statements based on the
current state of the code and the position of the statement insertion
(such as initializing a variable that is used at a later point in the
code or reusing an already initialized one). Note that the program
analysis only outputs valid proposals, i.e. it will not propose to
initialize a variable that is already initialized.

3.4 Argument proposal generation
Once the user has chosen a statement from the proposal list, he
has to chose its parameters from the generated proposal lists or
introduce a new variable, which needs to be initialized in the code
before the inserted statement at a later time. In case the parameters
types are primitives such as int, the list of proposals is generated
from the parsed input. Therefore for every item in the knowledge
base the sets of pairs Aname−name ,Aname−desc ,Avalue−desc are
built, where

• Aname−name is a Cartesian product of all pn and the name
of the parameter
• Aname−desc is a Cartesian product of all pn and the docu-
mentation of the parameter
• Avalue−desc is a Cartesian product of all pv and the docu-
mentation of the parameter

and pn ∈ Pn ,pv ∈ Pv if no mapping between possible parameter
and values was detected in the parsed input. If a possible mapping
was detected, the sets are built such that (pn,pv) ∈ Pnv accordingly.
Note that this is reflected in the ranking vector representation, to
weigh inputs with an explicit mapping accordingly. The ranking
vector fp = (d1, ..d3, s1, ..s3, i) is formed according to Table 2.

Table 2: Feature vector components used for ranking the
statement and parameter proposals. δ is a similarity func-
tion, based on either string similarity (s) or distributional
semantics (d), depending of the vector component.

Comp Description
Statement proposal feature vector

d1, s1 max of δ ((t1, t2)) for all (t1, t2) ∈ Mname
d2, s2 max of δ ((t1, t2)) for all (t1, t2) ∈ Mdesc
d3, s3 max of δ ((t1, t2))) for all (t1, t2) ∈ Pname−name
d4, s4 max of δ ((t1, t2))) for all (t1, t2) ∈ Pname−desc
d5, s5 max of δ ((t1, t2))) for all (t1, t2) ∈ Pvalue

Parameter proposal feature vector
d1, s1 max of δ ((t1, t2)) for all (t1, t2) ∈ Aname−name
d2, s2 max of δ ((t1, t2)) for all (t1, t2) ∈ Aname−desc
d3, s3 max of δ ((t1, t2))) for all (t1, t2) ∈ Avalue−desc

i 1 or 0, indicates detected parameter mappings



Vajra: Step-by-step Programming with Natural Language IUI ’19, March 17–20, 2019, Marina del Ray, CA, USA

Algorithm 1 Rule-based Scoring Input Extractor
Input: Semantic role objects semobjs
Output: candidates si ← (M, Pn , Pv , Pnv )

si ← (M, Pn , Pv , Pnv )
for node ∈ semobjs .nodes do

if node .type == ACTION then
si[M].add(node)

else if node .type == OB J then
si[M].add(node)
si[Pn ].add(node)
si[Pv ].add(node, type(node))

else if node .type == VALUE then
si[Pv ].add(node, type(node))

else if node .type == MOD then
si[M].add(node)
si[Pv ].add(node, type(node))

end if
end for
for (lhs, edдe, rhs) ∈ semobjs .edдes do

if edдe == ATTR then
si[Pnv ].add((lhs, rhs, type(rhs)))
si[Pn ].add(lhs)
si[Pv ].add(rhs, type(rhs))

end if
if edдe == MOD then

si[Pv ].add(rhs, type(rhs))
end if

end for
handleDisconnectedPairs(semobjs)
return si

Again, the list of proposals generated from the input is enriched
by valid proposals based on program analysis, such as already
initialized variables.

3.5 Semantic Result Ranking
In general, the positions of the vector fs and fv represent the
semantic similarity between different aspects of the parsed user
input and parts of the knowledge base items. We use two similarity
measures:
• String distance based: A string distance function such as
Levenshtein distance [15] measures the lexical difference be-
tween two terms by counting the minimal number of re-
quired changes, deletions or additions of characters to match
a pair of strings [25, p. 37].
• Distributional semantics based: Distributional semantic
similarity measures the distance between two word embed-
dings and is capable of capturing the semantic similarity
between two terms. We use a model based on word2vec [23]
embeddings trained on a corpus of Wikipedia articles.

To perform the ranking based on the feature vectors we train a
ranking function to assign weights to different features and rank
accordingly. We use a learn-to-rank approach [16]. By training a
Support Vector Machine (SVM) classifier, following the pair-wise

ranking approach [16, Ch. 4.1]. The classifier has to be trained for
each knowledge base separately. For our knowledge base used in the
evaluation, comprising 13 classes and 30 resources definitions, the
creation of a small dataset took less than one hour by the knowledge
base developer.

The whole proposal generation and ranking process for state-
ments is illustrated in Figure 5.

3.6 Limitations and Scope
The scope of Vajra was set as a end-user programming platform. As
such, convenience constructs such as Python’s list comprehensions
mainly aimed towards experienced programmers are not supported
nor are they required. One might argue that simple control flow
constructs could be introduced in order to allow end-users to exert
more control over the program. We follow the philosophy that
the designer of the knowledge base should be left to decide which
control flow elements he wants the end-user to utilize and thus
exposing them in form of functions.

One inherent limitation of the approach is that it heavily relies
on the documentation quality of the knowledge base designer. Poor
documentation of parameters, return values and types or badly cho-
sen resource names may impact the semantic matching capabilities.

Additionally, in its current state, the user interface provides
limited feedback whether the composed program is working and
whether it is doing so in the intended way. While generated state-
ments are syntactically well-formed by design and users are noti-
fied about uninitialized variables, a future iteration of the design
might include a better handling of runtime errors such as a live-
programming component that executes the code while it is being
programmed.

4 EVALUATION
To measure the quality of the proposed approach, an evaluation
was conducted to answer the following questions:

(1) Are users able to learn to use the system in order to solve
programming tasks?

(2) Is programming expertise reflected in the time it takes users
to solve a task?

(3) How complex do the natural language commands need to
be in order to express the users’ intent?

(4) What is the users’ perception of the system’s usability?

4.1 Setting
To answer these questions, we conducted a usability study. We
asked users to implement two typical tasks involving programming
a robot inside a hospital. The robot can execute actions like grabbing
objects, moving and reading text aloud. First, users are required
to solve a simple task with only an introduction to the most basic
concepts of the system. Then, after a detailed explanation, the user
is requested to solve a more complex task.

For both tasks, the time to solve the is tracked for each partici-
pant. Solved in this case means the resulting program behaves in
accordance to the task description. To measure the general usability
users were asked to fill out a questionnaire. The questionnaire is
based on the System Usability Scale (SUS) [3], which consists of 10
statements. Users can agree with the statements to an extent by
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giving scores on a Likert-type scale (where 1 is the least and 5 is
the most).

In total, 12 volunteers participated in the evaluation. Five of them
declared they are familiar with at least one programming language
with a 4 or 5 on a Likert-type scale. Seven of them declared they
have no prior experience in programming with a 1 and 2 on the
scale.

Each participant was handed an evaluation briefing in paper
form, consisting of a short explanation of the field of study followed
by a basic description of the system’s capabilities. The briefing
contains two tasks for the user to complete the evaluation, which
are specified below. These tasks describe a scenario the user needs
to solve using the User Interface (UI). Each task is limited in time
and monitored by a supervisor. The supervisor will create a test
protocol containing relevant details (such as adding or removing a
line of code or changing the query) and progress during the session.
To start the evaluation, each participant opens the Vajra UI in the
browser and tries to solve Task 1.
• Task 1: In the first task, the user is told to create a robot and
let it say a predefined text. The time frame is limited to 10
minutes. The user is not presented with a full explanation
of the system before this first task. Instead, the user is in-
troduced to the task and presented with an overview of the
three main control elements for orientation. The purpose of
not introducing the user to all concepts before the first task
is to evaluate the general usability and to get an unbiased im-
pression on how users interact with an unknown prediction
based interface.
• Task 2: All users start with the correct instructions needed
to complete Task 1 and are asked to add further statements to
complete the second task which requires the user to instruct
the robot to grab an object and move to another room. This
task is limited to 20 minutes and ends if the user completes
the task or the time has run out.

This form of study gives insights in how users interact with
the system, however it is limited in following aspects. Firstly, the
number of participants is low, so the quantitative evaluation of
the results is prone to noise. Therefore we focus on a qualitative
analysis in the discussion. Secondly, we omit the evaluation of our
prediction model in the traditional way, that is using gold-standards
and their associated metrics. We chose to do so deliberately, because
we’re interested in how the user can benefit from our predictions
rather than in performance of the model according to those metrics.
Lastly, we are aware that our study design might be affected by
an experimenter bias, where participants (1) might be influenced,
albeit unintentionally, by the person conducting the study and (2)
tend to give better grades out of sympathy. A future study carried
out without human contact, for example using one of the existing
crowd-sourcing platforms, will help combat this effect.

4.2 Overview
The evaluation showed that programmers, as well as non-program-
mers, learned the system quickly (26.7% improvement in time per
instruction for non-programmers, a similar performance of both
groups in the second task). All participants were able to solve the
given tasks and rated the system with an “excellent” [2] usability

score (average 85/100). Furthermore, they intuitively optimized
their query length to a required minimum in both tasks (average of
2 words per query) to achieve the desired outcome.

The following sections discuss the users’ effectiveness when us-
ing the system to perform the tasks, covering Questions 1 and 2,
their interaction of with the system, covering Questions 3 and the
usability of Vajra, covering Question 4.

4.3 Effectiveness and Efficiency
All participants were able to complete both tasks in the given time.
To measure the users’ efficiency during the tasks, the average time
per instruction was measured for all participants. This measure
reflects a user’s efficiency to express his intent in code - lower time
per instruction means the user is able to create desired programs
more quickly. In the first task, without a guided introduction to the
system, on average, the group of non-programmers took 27% longer
per instruction than the experienced programmers (percentage
change) as seen in Figure 6.

Figure 6: Time per instruction (seconds) on average per user
for both tasks

After the guided introduction (Task 2), both groups achieved
nearly the same performance, see Figure 6.We argue that this shows
that the programming aspect of the system was encapsulated in
a simple way, even non-programmers could grasp the concepts
fast. In comparison to the performance of the first task, on average,
the non-programmers improved by 26.7%, programmers by 7.0%
(percentage change). This is consistent with the observation that
non-programmers were much more trusting in the system than
programmers, especially in the second task. Non-programmers
often accepted the systems defaults and proceeded to the next
instruction more quickly than programmers, after they understood
the concepts. Another potential reason is that programmers tended
to create variables first before referencing them, which counteracted
the principles of the program analysis component of the system. The
low variance (except for one outlier) in the group of programmers
shows that programmers, despite being more careful, were more
consistent in the use of the system. The marked out-lier in the
programmers’ group was the result of not trusting the system’s
prediction and based on confusion about a variable’s name.
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4.4 User interaction
The evaluation has shown that users have no difficulties using
the system after a basic introduction. An important factor on how
the participants were using the system is the length of the query:
All participants, even users without a programming background,
were using very short user queries n <= 3 for 76.5% of the time,
according to Table 3, especially to query variable names and types
directly. They intuitively optimized the query to a bare minimum
such as ’robot move’ or ’create flower’, as soon as they realized
that it is sufficient to get the right predictions. Since the method of
program analysis predicts resources based on unbound variables,
users realized they do not have to change their query every time
to solve those dependencies and changed their query only to add
statements which could not be solved otherwise. This supports the
fact that complex syntactic structure is not required to express a
command in natural language to be parsed by a semantic parsed
nor does it seem desired by users. Hence optimizing on parsing
long or nested sentences would not benefit the user in a system
designed as ours, which gives important insight for future work.

Table 3: Number of words in the user query, grouped by task

Length T1 % T2 % Total %
1 9 15.2% 22 23.7% 31 20.4%
2 29 49.2% 47 50.5% 76 50.0%
3 17 28.8% 13 14.0% 30 19.7%
4 3 5.1% 7 7.5% 10 6.6%
5 0 0.0% 3 3.2% 3 2.0%
6 1 1.7% 1 1.1% 2 1.3%
Total 59 100.0% 93 100.0% 152 100.0%

4.5 Usability
Based on the result of the questionnaire, each participant was asked
to fill out after the completion of both tasks, the usability score is
calculated using the System Usability Scale (SUS) formula [3, p.194].
This calculation leads to an average SUS score of 85.41 out of 100
(higher is better, σ = 6.29).

For further evaluation, users were grouped by their prior pro-
gramming experience: All users were asked to answer the question
if they have experience in at least one programming language on
a Likert-type scale from 1 to 5, with 5 showing the user strongly
agrees with this statement, having experience with at least one
programming language [3, p.191].

Table 4: Distribution of the programming experience of par-
ticipants

Experience in Programming Participants
1 (Strongly disagree) 4
2 3
3 0
4 1
5 (Strongly agree) 4
Total 12

Of all participants, 40% declared an experience in programming
of 4 or higher on the Likert scale. Those programming-experienced
users lead to an average SUS score of 87.5 (σ = 5.86), while users
inexperienced with programming rated the system 83.9 (σ = 6.59).
Based on discussions with the participants, this difference in rat-
ing, in our opinion is the result of the programmers acknowledg-
ing the simplicity and usefulness of the system more than non-
programmers, because of their experience with the difficulties of
programming. Programmers especially mentioned the usefulness
of such a system for beginners in programming.

5 CONCLUSION
This paper presented an approach to provide support for end-users
to explore third-party APIs, by lowering the barriers introduced by
a programming language syntax and an API design and wording
unknown a-priori. We achieved that by introducing a programming
environment based on a semantic parser that allows to create and
compose well-formed programming code using natural language
commands.

Furthermore, this paper investigated the efficiency of the ap-
proach by conducting a usability study of the environment. The eval-
uation has shown that programmers, as well as non-programmers,
can use the system efficiently after a short introduction and perceive
high usability.

Future work on this subject may include an investigation on
how to better represent the programming code in the user interface,
because as we discovered during the evaluation, most confusion
of non-programmers resulted from the representation of the code
structure itself. In addition to that, a study with more participants
can provide additional insight and will allow for more reliable
statements concerning usability.
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